
C++ Runtime in the FreeBSD
Kernel

A Work In Progress Talk by
ADAM David Alan Martin
adamartin@FreeBSD.org

Goals
• A loadable module “libc++.ko”

– Developers wishing to write in C++ can depend
upon this.

• Zero impact upon C development in the
kernel.

• Full C++ language feature support
• Eventual full C++0x language feature

support.

What does C++ provide?

• STL - Standard Template Library (lots of
data structures and algorithms)

• Inheritance - Useful for related types
• Templates - Can be safer than macros
• Destructors/RAII - Safely manage resources
• Virtual functions - Easier dispatch-vectors
• Exceptions - Useful to report some errors.

Challenges and Tasks

• Choosing the right compiler options.
• Getting C++ STL libraries into the kernel.
• C++ runtime support for virtuals.
• C++ runtime support for exceptions.
• Getting kernel headers to behave nicely with C++.

(There are some uses of C++ reserved words in
them. Almost no headers have extern “C” blocks!)

• Licensing issues?

What’s done so far?

• Constructors
• Destructors
• Templates
• Inheritance (Including multiple and virtual)
• Virtual functions

What’s done so far? (continued)

• C++ new and delete map into malloc(9) and
free(9), and support struct malloc.

• Many kernel resources have C++ RAII
management classes, like struct mtx.

• Many STL components have been
implemented.
– Reimplemented under under a BSD license.

What’s not working?

• C++0x features -- We need compiler
support first.

• C++ Exceptions. All of it! This is the
hardest part of implementing a C++
runtime.
– It currently panics when doing stack

unwinding.
• C++ RTTI is not well supported.

Questions?

Don’t be shy!

